

LA-UR-21-32114

Approved for public release; distribution is unlimited.

Title: Phonons as a means for understanding Pu-Ga materials

Author(s): Rudin, Sven Peter

Intended for: 20210001DR Project Appraisal with external reviewers (12/14/2021)

Issued: 2021-12-10

Phonons as a means for understanding Pu-Ga materials

Sven P. Rudin, T-1

December 14, 2021

DFT: Ce₃In as "cold" system to align experiment and theory – change f electron treatment?

cannot ignore electronic contribution.

1.245E-05

 $1/a \, da/dT$

(LANL)

DFT: Ga doping of δ -Pu introduces phonon modes at experimentally observed frequencies.

Measured for Ga in Pu-3.6 at. % Ga: $f_{\text{average}} = 3.96 \text{ THz}$ LYNN et al. PRB 58, 11414 (1998)

new modes (interacting Ga atoms at higher concentrations)

DFT: Ga doping of δ -Pu introduces phonon modes that are Ga-dominated and localized.

Compared to mass-only substitution:

- 1) Pu-dominated modes
- 2) Ga-dominated modes
 - a) more localized
 - b) higher frequencies

DFT: Ga doping of δ -Pu suggests stabilization of delta phase is not thermodynamic.

of low-frequency modes

proposed pathways to alpha: more stable

DFT: Ga doping of δ -Pu changes the phonons' contribution to the heat capacity. (But the effect is swamped by the electronic contribution.)

Next steps

- 1. Ce₃In: modify treatment of f electron in calculations.
- 2. DFT calculations of Ga-doped alpha-Pu: how does alpha-Pu's thermodynamic stability change?
- 3. Repeat the calculations with Al and In instead of Ga: do trends emerge consistent with experimental observations?
- 4. Explore with DFT the energy landscapes defined by the phonons proposed to initiate α -to- δ transition pathways: what do the landscapes look like? Does Ga doping change them?
- 5. DFT calculations of the effect of Ga doping <u>and</u> interstitial defect: how does Ga affect the instability induced by the defect?

DFT: effect of magnetic structure on phonon modes

Pu-2 at. % Ga

Pu-0 at. % Ga

WONG *et al.* Phys Rev B **72**, 064115 (2005) Inelastic x-ray scattering DFT (AFM)

Choice of 72-atom cell size

Range of Ga-Ga cold interaction in 72-atom cell

Phonon moments: change with Ga concentration

DFT: effect of Ga doping on character of low-frequency phonon modes

Pu-1.4 at. % Ga

Pu-5.6 at. % Ga

